ABONAMENTE VIDEO REDACȚIA
RO
EN
NOU
Numărul 142
Numărul 141 Numărul 140 Numărul 139 Numărul 138 Numărul 137 Numărul 136 Numărul 135 Numărul 134 Numărul 133 Numărul 132 Numărul 131 Numărul 130 Numărul 129 Numărul 128 Numărul 127 Numărul 126 Numărul 125 Numărul 124 Numărul 123 Numărul 122 Numărul 121 Numărul 120 Numărul 119 Numărul 118 Numărul 117 Numărul 116 Numărul 115 Numărul 114 Numărul 113 Numărul 112 Numărul 111 Numărul 110 Numărul 109 Numărul 108 Numărul 107 Numărul 106 Numărul 105 Numărul 104 Numărul 103 Numărul 102 Numărul 101 Numărul 100 Numărul 99 Numărul 98 Numărul 97 Numărul 96 Numărul 95 Numărul 94 Numărul 93 Numărul 92 Numărul 91 Numărul 90 Numărul 89 Numărul 88 Numărul 87 Numărul 86 Numărul 85 Numărul 84 Numărul 83 Numărul 82 Numărul 81 Numărul 80 Numărul 79 Numărul 78 Numărul 77 Numărul 76 Numărul 75 Numărul 74 Numărul 73 Numărul 72 Numărul 71 Numărul 70 Numărul 69 Numărul 68 Numărul 67 Numărul 66 Numărul 65 Numărul 64 Numărul 63 Numărul 62 Numărul 61 Numărul 60 Numărul 59 Numărul 58 Numărul 57 Numărul 56 Numărul 55 Numărul 54 Numărul 53 Numărul 52 Numărul 51 Numărul 50 Numărul 49 Numărul 48 Numărul 47 Numărul 46 Numărul 45 Numărul 44 Numărul 43 Numărul 42 Numărul 41 Numărul 40 Numărul 39 Numărul 38 Numărul 37 Numărul 36 Numărul 35 Numărul 34 Numărul 33 Numărul 32 Numărul 31 Numărul 30 Numărul 29 Numărul 28 Numărul 27 Numărul 26 Numărul 25 Numărul 24 Numărul 23 Numărul 22 Numărul 21 Numărul 20 Numărul 19 Numărul 18 Numărul 17 Numărul 16 Numărul 15 Numărul 14 Numărul 13 Numărul 12 Numărul 11 Numărul 10 Numărul 9 Numărul 8 Numărul 7 Numărul 6 Numărul 5 Numărul 4 Numărul 3 Numărul 2 Numărul 1
×
▼ LISTĂ EDIȚII ▼
Numărul 100
Abonament PDF

Machine Learning cu Microsoft ML.NET (III)

Daniel Costea
Senior Software Developer @ EU Agency



PROGRAMARE


Pentru a recapitula cele spuse până acum în primul și al doilea articol, este clar că atunci când construim un model, selecția elementelor de antrenament este cel mai dificil aspect. AutoML vă poate furniza o listă cu cele mai bune modele, datorită datelor metrice de evaluare care acompaniază fiecare model. Pregătirea datelor este complexă și necesită mult timp. Alături de fluxul de antrenament (training pipeline), datele pregătite construiesc un model pregătit să facă predicții.

După ce avem un model de machine learning putem să îl punem în aplicare și să prezicem niște date.

var sampleData = new ModelInput
{
  Luminosity = lux,
  Temperature = temp,
  Infrared = infra,
  CreatedAt = DateTime.Now
  .ToString("dd/MM/yyyy hh:mm:ss"),
  Distance = 0
};

var predictor = mlContext.Model
.CreatePredictionEngine
  <ModelInput, ModelOutput>(model);

var predicted = predictor
  .Predict(sampleData);

Console.WriteLine(
  predicted.PredictedLabel);
Console.WriteLine(predicted.Score);

Fie că tocmai am creat modelul, fie că l-am încărcat dintr-un fișier salvat anterior, tot ce avem de făcut este să instanțiem un obiect de tip motor de predicție (prediction engine) folosind CreatePredictionEngine și să apelăm metoda Predict. Vom obține PredictedLabel și un Score pentru aceasta.

Consumați modelul într-un scenariu Enterprise

Abordarea anterioară pentru realizarea predicțiilor funcționează bine pentru scenariile simple (precum aplicațiile consolă), dar ce se întâmplă când vrem să scalăm contextul într-un scenariu complex?

Obiectul PredictionEngine nu este thread-safe (nu funcționează corect când avem mai multe threaduri desfășurate în paralel, iar accesul la datele partajate trebuie serializat), pentru aplicații web unde s-ar putea să fie nevoie să creăm, iar apoi să distrugem obiectele de tip motoare de predicție. Pentru acest caz este nevoie de o abordare complexă.

La o primă vedere, pentru scenariile multi-thread, cum sunt aplicațiile web (folosind HTTP sau websockets), am putea crea o instanță unică (singleton) pentru obiectul PredictionEngine, dar motorul de predicție nu este thread-safe ca obiect, ceea ce poate afecta funcționalitatea. Așadar, avem nevoie de altceva.

Pachetul nuget Microsoft.Extensions.ML oferă un obiect numit PredictionEnginePool care dispune de un set de obiecte PredictionEngine inițializate, gata de a fi folosite.

Pentru inițializarea bazei de obiecte, trebuie să adăugăm AddPredictionEnginePool la servicii în fișierul Startup.cs.

public void ConfigureServices(
 IServiceCollection services)
{
  services
  .AddPredictionEnginePool < ModelInput, ModelOutput > ()
    .FromFile(modelName: "Model", 
     filePath:"Model.zip);
}

Apoi poate fi consumat astfel:

public class PredictController : 
Controller
{
  private readonly 
  PredictionEnginePool < ModelInput, ModelOutput > _engine;

  public PredictController(
  PredictionEnginePool < ModelInput, ModelOutput > engine)
  {
    _engine = engine;
  }

  [HttpPost]
  public IActionResult Post(ModelInput input)
  {
    ModelOutput prediction = _engine.Predict(modelName: "Model", example: input);

    return Ok(prediction);
  }
}

Modelele de machine learning pot fi reantrenate și relansate oricând, situație care poate genera downtime pentru aplicație. Nu vă îngrijorați, serviciul PredictionEnginePool oferă o modalitate de a reîncărca un model reantrenat fără a dezactiva aplicația.

Extensii pentru Deep Learning

"ML.NET este o platformă extensibilă. Prin urmare, puteți consuma celelalte paradigme ML populare (TensorFlow, ONNX, Infer.NET, și nu numai)", este ceea ce citim din documentație, iar ML.NET devine astfel un factor important în universul Deep Learning. ML.NET nu este (încă) capabil să antreneze un model de deep learning de la zero.

Consumați modelele TensorFlow

TensorFlow este o paradigmă open source pentru deep learning și machine learning creată de Google în 2015. TensorFlow are suport pentru Python, Java, C++, C# și multe alte limbaje. Pentru C# puteți lucra cu TensorFlow.NET SDK dacă plănuiți să construiți, antrena și infera modele deep learning. TensorFlow.NET respectă îndeaproape convențiile de denumire Python și este open source. Desigur, este nevoie de ceva timp pentru a-l învăța și aveți nevoie de abilități data science. Ce se întâmplă dacă nu aveți nici timp, nici abilități?

Momentan, ML.NET (folosind pachetul nuget Microsoft.ML.TensorFlow) este limitat la scoring și transferul informației învățate (transfer learning). Avantajul este că puteți folosi, într-o manieră foarte simplă, modelele TensorFlow antrenate cu alte paradigme (Azure Custom Vision, Keras etc.) pentru studii de caz variate precum: computer vision, recunoașterea imaginilor, recunoașterea vocii, traduceri, recunoașterea scrisului de mână și nu numai. Totuși, antrenamentul unui model deep learning de la zero, precum Inception, poate lua câteva zile sau săptămâni (în funcție de puterea de calcul).

De exemplu, poți face scoring pe imagini folosind modelul TensorFlow Inception, un model static salvat în format protobuf (.pb). Acest model este utilizat pentru clasificarea de imagini și a fost preantrenat cu imagini fotografice ale diferitelor obiecte precum animale, legume și alte obiecte din viața cotidiană. Imaginile sunt clasificate în 1000 (o mie) de clase diferite, iar modelul va produce cele mai asemănătoare clase pentru imaginea voastră, cu scorul aferent.

În prima linie de cod, apelăm metoda LoadFromEnumerable cu o listă goală de obiecte. Deorece facem doar scoring, nu trebuie să încărcăm date de intrare când construim pipeline-ul de antrenament, dar avem nevoie de aceste lucruri când citim schema datelor. Mai apoi, se construiește un pipeline de antrenament cu o imagine și model loaders, dar și cu transformări precum redimensionarea imaginii și extragerea pixelilor, ultimele operațiuni fiind menite pentru obținerea scorului.

var data = mlContext.Data.LoadFromEnumerable(
 new List<ImageNetData>());

var pipeline = mlContext
  .Transforms.LoadImages(
    outputColumnName: "input",
    imageFolder: imagesFolder,
    inputColumnName: nameof(ImageNetData.ImagePath))
  .Append(mlContext.Transforms.ResizeImages(
    outputColumnName: "input",
    imageWidth: ImageNetSettings.imageWidth,
    imageHeight: ImageNetSettings.imageHeight,
    inputColumnName: "input"))
  .Append(mlContext.Transforms.ExtractPixels(
    outputColumnName: "input",
    interleavePixelColors: ImageNetSettings
     .channelsLast,
    offsetImage: ImageNetSettings.mean))
  .Append(mlContext.Model
    .LoadTensorFlowModel(modelLocation)
    .ScoreTensorFlowModel(
      inputColumnNames: new[] { "input" },
      outputColumnNames: new[] { "softmax2" },
      addBatchDimensionInput: true));

  ITransformer model = pipeline.Fit(data);

  var predictor = mlContext.Model
   .CreatePredictionEngine<ImageNetData, 
    ImageNetPrediction>(model);

predictor.Predict(new ImageNetData 
  { ImagePath = path, Label = label });

De multe ori, nu vrem să limităm predicțiile la clasele existente. În loc de a face acest lucru, veți dori să interceptați voi înșivă nivelul final și să completați voi antrenamentul cu setul vostru de imagini pentru clasele dorite.

Identificarea nivelelor dintr-un grafic nu este magie neagră și cel mai probabil nu avem nevoie să cunoaștem modelul. Așadar, un instrument precum Netron este o metodă excelentă de vizualizare.

Să ne îndreptăm atenția spre nivelul softmax spre final. În mod normal, pentru clasificarea imaginilor utilizând miile de clase originale, dispunem de nivelul softmax care selectează rezultatul cel mai bun, deci clasificare finală (identificarea clasei) este realizată de modelul în sine.

Când dorim să completăm antrenamentul cu setul nostru de date (clase și imagini), ne referim la transfer learning (transferul informațiilor învățate).

Să ne uităm întâi la cod, iar apoi să intrăm în detalii.

var data = mlContext.Data.LoadFromTextFile<ImageNetData>(dataLocation);

var pipeline = mlContext
  .Transforms.Conversion.MapValueToKey(
    outputColumnName: LabelToKey,
    inputColumnName: nameof(ImageNetData.Label))
  .Append(mlContext.Transforms.LoadImages(
    outputColumnName: "input",
    imageFolder: trainImagesFolder,
    inputColumnName: nameof(ImageNetData.ImagePath)))
  .Append(mlContext.Transforms.ResizeImages(
    outputColumnName: "input",
    imageWidth: ImageNetSettings.imageWidth,
    imageHeight: ImageNetSettings.imageHeight,
    inputColumnName: "input"))
  .Append(mlContext.Transforms.ExtractPixels(
    outputColumnName: "input",
    interleavePixelColors: ImageNetSettings
    .channelsLast,
    offsetImage: ImageNetSettings.mean))
    .Append(mlContext.Model
      .LoadTensorFlowModel(modelLocation)
      .ScoreTensorFlowModel(
        inputColumnNames: new[] { "input" },
        outputColumnNames: new[] {
        "softmax2_pre_activation" }, 
        addBatchDimensionInput: true))
    .Append(mlContext.MulticlassClassification
      .Trainers.LbfgsMaximumEntropy(
      labelColumnName: LabelToKey, 
      featureColumnName: "softmax2_pre_activation"))
  .Append(mlContext.Transforms.Conversion
  .MapKeyToValue(PredictedLabelValue, 
    PredictedLabel))
  .AppendCacheCheckpoint(mlContext);

ITransformer model = pipeline.Fit(data);

var predictor = mlContext.Model
  .CreatePredictionEngine<ImageNetData, 
   ImageNetPrediction>(model);

predictor.Predict(new ImageNetData 
  { ImagePath = path, Label = label });

Comparând codul pentru transfer learning cu cel de scoring, observăm că:

Consumați modelele ONNX

ONNX este un format standard, interoperabil și deschis creat de Facebook și Microsoft pentru modelele de deep learning. Cu ONNX, programatorii AI pot muta mai ușor modelele de la un instrument (tool) la altul. Precum TensorFlow, multe studii de caz sunt acoperite de modelele ONNX existente: clasificarea imaginilor, detecția obiectelor și segmentarea imaginii, analiza feței și a gesturilor, manipularea imaginii, procesarea vorbirii și cea audio, traducerea automată, modelarea limbajului și alte modele interesante.

YOLO (You Only Look Once) este un model bine cunoscut de deep learning pentru detecția obiectelor multiple în timp real (\~30 fps pe CPU), model capabil să identifice obiectele din 80 de clase. Sunt versiuni mai mari precum YOLO9000 care extinde YOLO pentru a clasifica obiectele în mai mult de 9000 de clase. O versiune mai mică antrenată cu 20 de clase obiect numite Tiny YOLO este ceea ce vom folosi în mostra noastră de cod. Clasele existente sunt:

Din perspectiva codului, trebuie să încărcăm datele cu o listă goală (așa cum am făcut pentru TensorFlow scoring) pentru a citi schema datelor, dar restul este foarte similar cu scoringul de la TensorFlow. Pentru a interpreta rezultatele se folosește o logică mai consistentă. Aceasta este din cauza datelor de ieșire. Modelul returnează o listă a celor mai bine prezise obiecte alături de gradul lor de precizie și de un bounding box.

var data = mlContext.Data.LoadFromEnumerable(
  new List<ImageNetData>());

var pipeline = mlContext.Transforms.LoadImages(outputColumnName: "image", 
  imageFolder: "", 
  inputColumnName: nameof(ImageNetData.ImagePath))
  .Append(mlContext.Transforms.ResizeImages(outputColumnName: "image", 
  imageWidth: ImageNetSettings.imageWidth, 
  imageHeight: ImageNetSettings.imageHeight, 
  inputColumnName: "image"))
  .Append(mlContext.Transforms.ExtractPixels(outputColumnName: "image"))
  .Append(mlContext.Transforms.
   ApplyOnnxModel(modelFile: modelLocation, 
    outputColumnNames: new[] 
   { TinyYoloModelSettings.ModelOutput }, 
   inputColumnNames: new[] 
   { TinyYoloModelSettings.ModelInput }));

var model = pipeline.Fit(data);

Microsoft ML.NET se îmbunătățește în permanență cu noi funcționalități, antrenori (trainers) și scenarii de antrenament. De exemplu, suportul GPU pentru CUDA a fost adăugat recent pentru [re]antrenarea locală a modelelor noastre și suportul inferențelor pentru aplicații Blazor client-side (folosind WebAssembly).

De ce iubesc ML.NET?

ML.NET nu va înlocui framework-uri precum TensorFlow, dar luând în calcul că AI va fi adoptată de majoritatea aplicațiilor, în calitate de programator .NET fără cunoștințe solide de știință, prefer o paradigmă code-first.

ML.NET este foarte ușor de învățat și îl puteți folosi pe diferite platforme precum Linux, macOS sau Windows cu C# sau F#.

Mă puteți găsi pe github.com/dcostea și twitter.com/dfcostea pentru mai multe informații și proiecte interesante.

Conferință

NUMĂRUL 142 - Robotics & AI

Sponsori

  • Accenture
  • BT Code Crafters
  • Accesa
  • Bosch
  • Betfair
  • MHP
  • BoatyardX
  • .msg systems
  • Yardi
  • P3 group
  • Ing Hubs
  • Colors in projects

INTERVIURI VIDEO